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In this supplementary material we give the complete proof of Theorem 5
in Fan, Xue and Zou (2013).
Theorem 5 Let m = max(; ;) |2;;|. Under Assumption (A2) and
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PrROOF OF THEOREM 5. By definition, it obviously holds that
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Using the convexity of ¢,,(-), we obtain
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This entails that on the event
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2 J. FAN, L. XUE AND H. ZOU

Using the fact that |87 — |le~“850| + 185 — B§“850| = 0 for any j € A°, we
conclude that

1 ~lasso ~lasso
I8 =Bl <2184 — Bl
~1 ~1 ~1
where we denote (3 80 = (,8;850, ijso). The last inequality is equivalent
to
~lasso ~lasso
(2) Hﬁ.AC ||Zl < 3||5A - ﬂﬁ”h

In what follows, our aim is to derive the upper bound

~lasso

H/B - IB*HEQ < 5/{;;it51/2Alasso

under the event (1). Then the desired probability bound can be obtained by
using the Hoeffding’s bound in the proof of Theorem 4 of Fan et al. (2013).
Now we consider a map F': RP — R satisfying

F(A) = (8" + A) = £n(B7) + Masso(18" + Alley = 187[|e)-

In addition, we define A = argmina F (A). Then by definition we have

~lasso -~

A=70 — B*. Since F(0) = 0, F(A) < F(0) = 0. By Lemma 4 of
Negahban et al. (2012), because ||A s¢|l¢, < 3||Aalle, asin (2) and convexity
of F(A), it suffices to show that

F(A) >0
for any A € D, where
D={ACcR: [Aule, <3|Alle and [Allg, = 5r00:5" *Nasso}-
To this end, we first obtain a lower bound for ||3* + All¢, — 1874, i-e.,

18+ Alle, = 18%le, = 1B4+ Aulle, + |1 Auclle, — 18lle;
(3) > [[Axclle, = [[AAlle

Next, we derive a lower bound for ¢, (3% + A) — ¢,,(8). To simplify nota-
tion, we define G(u) = £,,(8* + uA). Recall that ¥"(t) = 6(¢t)(1 — 6(¢)) and
P (t) = 0(t)(1 — 0(¢))(20(t) — 1) with 6(t) = (1 + exp(t))~!. Then we have

') = S+ uA) - (@A)

) = YU+ uA)) - (@A)’
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ON THE COMPUTABLE STRONG ORACLE OPTIMALITY 3
By using the simple fact that
0< ") <¥"(1),

we have

|G ()| < max |z A[ - G"(w) < ml| A, - G (u).
Note that by the definition of D,
1ALl = [1A4lle, + 1Al < 4 AAlle, < 4ms'?[Allg,.
Let z = 4m$1/2||AHg2 = 20m’€l_o;it5)\lasso > 0. Then we have
|G"(u)| < 2G"(u)

By Lemma 1 of Bach (2010), for any convex three times differentiable
function g(u) satisfying |¢"”'(u)| < Sg¢”(u) for some S > 0, we have

g(u) — g(0) — g'(0)u > ¢"(0) - S~*{exp(—uS) + uS — 1}.
Here we consider g(u) = G(u) and S = z. Let u = 1, and then we obtain
(4) G(1) = G(0) = G'(0) = G"(0) - h(2),

where h(z) = 27 2(exp(—z) + z — 1). By simple calculation it can be shown
that h(z) is a decreasing function in z > 0. Given that z < 1 holds by
assumption on \gss0, we have

h(z) > h(1) = exp(—1) > 1/3.

By definition G(1) = £,(8* + A), G(0) = £,(8%), G'(0) = (V£,(8*)) A and
G"(0) = A'V?(,(B*)A. Thus, we can re-write (4) as

(B + A) = 1,(8%) > (VL,(8%) A+ h(2)A'V2,(8%)A

1
(5) > (Vi (B8Y))'A+ §A’v2£n(ﬁ*)A
Next, under the event {||2X'(y — pu(8*))|lmax < 3Aiasso}, we have

) 1
(6) (ven(ﬁ*)) A 2 _iAlassoHA”El-
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4 J. FAN, L. XUE AND H. ZOU
Now under the same event, we combine (3), (5), (6) and the restricted eigen-

value condition (C2) to obtain

1 1

F(A) > g"@logitHAH?g - 5)‘lassc>HAHZ1 + )‘laSSO(HAAC||E1 - ||AAH€1)
1 3
> gﬁlogitHAHEQ - iAlassoHAA”fl
1 3
> g”logitHAHi - 5)‘1&350 : 81/2HAH52
_ %
6/flogz't
> 0.
This completes the proof of Theorem 5. o
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